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The one-dimensional contact process (CP) in a heterogeneous environment—a binary chain consisting of
two types of site with different recovery rates—is investigated. It is argued that the commonly used random-
sequential Monte Carlo simulation method which employs a discrete notion of time is not faithful to the rates
of the contact process in a heterogeneous environment. Therefore, a modification of this algorithm along with
two alternative continuous-time implementations are analyzed. The latter two are an adapted version of the
n-fold way used in Ising model simulations and a method based on a modified priority queue. It is demon-
strated that the commonly used (but incorrect as we believe) discrete-time method yields a different critical
threshold from all other algorithms considered. Finite-size scaling of the lowest gap in the spectrum of the
Liouville time-evolution operator for the CP gives an estimate of the critical rate which supports these findings.
Further, a performance test indicates an advantage in using the continuous-time methods in systems with
heterogeneous rates. This result promises to help in the analysis of the CP in disordered systems with hetero-

geneous rates in which simulation is a challenging task due to very long relaxation times.

DOI: 10.1103/PhysRevE.77.051125

I. INTRODUCTION

The contact process (CP) [1] is a prototype process for the
spread of epidemics in biological systems. It describes epi-
demics in a network where each node can be in one of two
states: infected (I) or susceptible (S) (so-called SIS models).
Infected nodes spread their infection to susceptible neighbor-
ing nodes at rate N while recovery is spontaneous at rate €.
The CP is a continuous-time Markov process and exhibits a
nonequilibrium absorbing state phase transition between an
active and a nonactive regime of the disease, behaving at its
critical point according to the directed percolation (DP) uni-
versality class. While the most part of the literature has con-
sidered the CP on ordered lattices with uniform infection and
recovery rates, the influence of heterogeneity or even disor-
der on its behavior has recently attracted considerable inter-
est [2-4]. The known behavior of the homogeneous CP has
been established by a range of analytical and numerical tech-
niques [2,3,5,6] such as renormalization group analysis [7],
series expansions [8], Monte Carlo (MC) simulations [9,10]
and diagonalization of the Liouville operator [11].

In particular, MC simulation has been an essential tool in
the investigation of critical properties of the CP. In their
seminal paper on the topic, Grassberger and de la Torre [9]
introduced a discrete-time formulation of the continuous-
time CP which is suited to computer simulation and has since
become the standard method of such investigations [2]. At
each time step of the simulation, an infected site is chosen at
random followed by a choice of whether to spread the infec-
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tion with probability p=X\/(\+e€) or to recover with prob-
ability 1-p=e/(\+¢€). The event of infection proceeds at a
randomly selected neighboring site and is successful only if
that site is in the susceptible state.

This investigation is concerned with the determination of
the exact critical threshold rate, the precise knowledge of
which is of prime importance in many cases, for instance,
control of epidemics [12,13]. Also, the knowledge of the
critical rate is vital when comparing to other methods like
perturbative series expansions [14]. Even though the stan-
dard discrete-time method has been used in connection with
heterogeneous systems [15,16], it must not be used in such
systems if one is interested in the accurate critical rate. This
is because it is not faithful to the rates in the definition of the
corresponding CP which can be seen from the following
qualitative arguments. In the simulation, once an infected site
i has been chosen, infection or recovery are attempted with
probabilities 1/(1+¢;) and €;/(1+¢;), respectively. This in-
troduces an unwanted additional heterogeneity in the effec-
tive infection rates due to the normalization involving the
recovery rate ¢ the value of which depends on the type of
node i.

Therefore, a modification of the commonly used algo-
rithm should be employed which remedies the problem and
is faithful to the rates even in the presence of heterogeneity.
Furthermore, it is possible to implement a continuous-time
simulation of the CP in which at each step, possible events
are randomly selected according to their rates along with
appropriately distributed waiting times between subsequent
events. Such an approach would naturally ensure a rate of
unity for all possible infection events irrespective of the cho-
sen site. This latter strategy has been employed for instance
in connection with Ising model simulations [17].
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In this paper, we first demonstrate the existence and extent
of the unwanted and uncontrolled heterogeneity in effective
rates. To this end, the CP is analyzed as defined on the sim-
plest heterogeneous one-dimensional system—a binary chain
consisting of two types of site A and B with identical infec-
tion rates A=1 but different recovery rates €, and €z, respec-
tively. A comparison between results produced by the com-
monly used simulation method and the modified version
which rectifies the problem is carried out to quantify the
deviation.

Further, we present two implementations of event-driven
simulations in continuous time. First, an adopted version of
the n-fold way algorithm [18] used in Ising model simula-
tions. Second, a simulation method based on a modified pri-
ority queue. This method takes advantage of the heap data
structure to pick and perform the event that happens next,
and uses the locality of the CP to ensure that the influence of
the chosen event only impacts minimally the heap of next
events [19].

An efficiency comparison between the different simula-
tion algorithms indicates a performance gain when using the
continuous-time methods. A Liouville operator scaling ap-
proach to the problem confirms the necessity of an algorithm
faithful to the rates for a quantitative determination of the
critical point.

In Sec. II, the different MC simulation methods are ex-
plained in more detail. Section III defines the Liouville op-
erator description of the CP and introduces finite-size scal-
ing. Following on, we present our results and their discussion
in Sec. IV. The findings are summarized in Sec. V.

II. MONTE CARLO SIMULATION METHODS

In the following, we present a description of three differ-
ent types of simulation method for the CP in heterogeneous
environments.

A. The discrete-time algorithm

As mentioned above, in the commonly used method of
discrete-time simulation [2,9], the definition of time as a con-
tinuous variable is abandoned. In this method, at each step of
the simulation, an infected site is chosen randomly from a
list of infected sites and the next event chosen with the ap-
propriate probabilities defined above. For infection, a ran-
dom nearest neighbor is selected and the proliferation to this
neighbor proceeds only if it is in the susceptible state. The
time increment between such update steps is chosen as Af
=1/Njpfeceq SUCh that a series of Nj,seceq Updates constitute an
integer time step. Thereby, on average each infected site has
a chance to either proliferate its infection or recover during
each time step. The algorithm is easy to implement and effi-
cient as it keeps a list of infected sites only. Unfortunately, as
argued in the previous section, it is unsuitable for the precise
determination of the critical point in the presence of hetero-
geneous rates.

Therefore, the following scheme, which remedies the in-
appropriate normalization ought to be used. One defines Q
=max(l+e€4, 1+¢€p) and, as in the previous method, selects
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an active site at each simulation step. Subsequently, one of
the events “infection” (), “recovery” (R), or “wait” (W) are
executed with probabilities

1 €;

i 1 1+€i
Pi=-, Pr=., Pw=1-—
0

0 0
given that active site i has been selected. This scheme repro-
duces the correct probabilities for the transitions between
states of the associated embedded Markov jump chain. The
time increment is now chosen as At=1/QN. As in the previ-
ous approach, the algorithm is easy to implement and keeps
a list of infected sites only. However, faithful simulation
comes at the price of a waiting step, the probability of which
increases with the difference between recovery rates, and
thus wastes computing time.

Both schemes represent an approximation of the true CP,
as the continuous-time Markov jump process is replaced by a
Markov jump chain with constant holding times. Grassberger
remarks [9] that by discretizing the CP, strictly speaking one
loses the ability to compare the resulting critical rates to
those in the original definition of the CP. However, the fixa-
tion of holding times is a good approximation at long times
and the discrete-and continuous-time processes share the
same stationary properties and long-time dynamics thus in
particular leading to identical critical behavior [2,20].

(1)

B. The n-fold way algorithm

In order to simulate the CP in continuous time, we pro-
pose to adapt a variant of the n-fold way algorithm [17,18]
which was introduced as an efficient tool for Ising model
simulations. The basic idea of the algorithm is that it is event
driven: at each step the simulation chooses one of the pos-
sible events, executes it and increments the clock by an ap-
propriate waiting time. In the n-fold way, one identifies the
M possible different situations a site could be in and the
associated possible events, the number of which is usually
small compared to the number of sites in the system.
Thereby, depending on the state they are in, these sites can
be grouped into M different event classes where class 7 has a
rate r; corresponding to the associated event and contains n;
elements; in the CP a class would for instance be an infected
class with the associated event being recovery. At each simu-
lation step, one first determines the total probability that an
event will occur, QM:Ej’ZInj r. Subsequently, the class i
which the next event will come from is chosen by generating
a random number between 0 and Q,, and determining which
partial sum Qi=E§fanj r; it belongs to. Finally, an element
from that class is randomly selected and the event executed.

Considering the forward equation of the stochastic pro-
cess [17] one can show that the appropriate distribution of
waiting times At is exponential, P(Af) ~exp(—Q,,Ar). There-
fore, after having executed the chosen event, the clock is
updated by a sample from this distribution, Ar=—=In()/Q,,
where u is a uniform random number between 0 and 1.

For the one-dimensional CP, we define an infected class
and two corresponding susceptible classes. The infected class
contains the infected sites which could potentially recover (at
rate €) while the two susceptible classes contain susceptible
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sites with one or two infected neighbors which could poten-
tially become infected (at rate N\ and 2\, respectively). For a
system with heterogeneous rates, additional classes can be
defined and are easily incorporated in an analogous fashion.
Every time an infection occurs, the chosen site along with its
nearest neighbors have to change class appropriately. This
book-keeping renders the n-fold way more involved than the
straightforward discrete-time version but allows one to sys-
tematically incorporate heterogeneous rates into the CP. In
comparison to the modified random-sequential algorithm,
one expects a performance gain as now every update attempt
will succeed.

C. The priority queue algorithm

Similarly to the n-fold way method, the priority queue
algorithm is based on the idea of picking the next event to
happen. In this case however, the times for every single pos-
sible individual event are picked from the relevant distribu-
tions, and of these the earliest calculated time is used to
decide the next event to perform. Since the CP is a local
process, the times already picked for events that take place
far from the chosen event will be unaffected by the change,
and these therefore do not need to be recalculated. The heap
data structure, alongside a reverse map from lattice position
to position in the heap, help minimize the effort required to
perform the events efficiently.

A heap is a binary tree-based data structure, where the
elements of the tree satisfy the heap condition, whereby the
key value (in this case the time of the event) at each point in
the tree is less than or equal to the key values in the node’s
left and right children [19]. Of the standard operations on a
heap, we use four: Removal of the top node of the tree,
insertion of a new node, alteration of an existing node, and
the removal of an existing node. We also maintain a map
from lattice position to the position of the relevant event in
the heap. This ensures that for a given site, we can immedi-
ately locate its event in the heap without searching. In the
nodes of the tree, we store the time of the event, the transi-
tion that is to happen (S to I or I to S for the CP), and the
lattice site on which the event is to be performed.

The simulation proceeds as follows. After populating the
heap with the initial possible events, the node at the top of
the tree contains the event with the minimal time; the next
event to perform. This event is removed from the heap,
which is reordered to maintain the heap condition. Perform-
ing the event will cause several changes. First, a new event
might now be possible at the site. If so, a time should be
picked from the distribution and this new event inserted into
the heap. Secondly, for each neighboring site the possible
events are likely to change, and so consequently the relevant
events must be either inserted into the heap, removed from
the heap, or the heap must be reordered to maintain the heap
condition. This is when the map from lattice position to
heap-node is used in order to find quickly the relevant event
in the tree. Once these updates have been performed, the
event at the top of the tree is once again the next event to
perform. The whole procedure is then repeated until a time
cutoff, or there are no more events to perform (an absorbing
state has been reached).
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One advantage of this approach is that it becomes pos-
sible to use different distributions for the waiting-times for
events. The exponential waiting-time distribution of the CP
is particularly well suited to this as it is “memoryless”—the
distribution of the time to the next event at a site is indepen-
dent of its history. Other distributions would need more care
to implement as they might require knowledge of the history
at each site. A notable exception is the process that occurs at
a fixed time, for example, the fixed infection period of Grass-
berger’s SIR model [21]. One further advantage to using this
method is that heterogeneous disordered rates can be incor-
porated easily into the algorithm. In particular, there is no
need for a separate class for each rate as in the n-fold way.
The main disadvantage of this method is in the increased
complexity of the book-keeping required, since although li-
braries exist that implement generic heap-based structures,
the additional map that must be kept in sync with the heap
complicates the implementation.

III. SPECTRAL ANALYSIS OF THE LIOUVILLE
OPERATOR

A. Master equation description of the CP

The following outlines the master equation description of
the CP which, when written in matrix form, gives rise to the
Liouville operator. For the CP on a linear chain of size N
with sites i=1,...,N one denotes the two possible states of
site i as s;=1 (infected) or s;=0 (susceptible). A microstate of
the system can be defined as a vector S=(s,,...,sy)” and the
probability of finding the system in a specific microstate at
time ¢ is denoted as P(S,7). Assuming the transition rates
between microstates S and S’ to be wg_g/, the time evolu-
tion of this probability is expressed by the master equation

(6],

AP(S,1) =D we sP(S',1) = 2 ws s P(S,0).  (2)
S’ S’

We can introduce a time-dependent probability state vector
for the system by

P(1)) = 2 P(|0),0)]0) 3)

such that (o |P(t))=P(|o),t) with |o) the orthonormal basis
diagonal in the occupation number representation. For nor-
malization, the elements of the probability state vector have
to sum to unity.

The master equation Eq. (2) can then be recast in compact
form

a|P(0) =~ LIP()), (4)

where ﬁ=2070/ﬁ0,0|(r’><0'| is the non-Hermitian Liouville

operator, the matrix elements of which, £,.,=(c'|L|a), co-
incide with the transition rates from state o to state o’ # o

and EAW=—EW¢UEA0,U. If the number of occupied nodes in
state ¢’ is greater by 1 than in state o then these states are
coupled by the transmission rate between the affected pairs

A

of sites i and j, £,/,%—N\, while in the case of a recovery of
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FIG. 1. The low-lying spectrum (modulus of real parts of eigen-
values) of the Liouville operator for the CP on a linear chain of
length L=8 for the homogeneous case [(a), upper panel] and the
case of heterogeneous recovery rates €, and ep for sites of type A
and B, respectively, where €z has been fixed to the homogeneous
critical rate €, [(b), lower panel].

an infected node i in the state o, £,,%—¢;. Eq. (4) can be
solved, in principle, by performing direct diagonalization of
the 2V X 2V real sparse (for lattice topologies) nonsymmetric
Liouville matrix.

As the Liouville operator is non-Hermitian, it is not nec-
essarily diagonalizable and its eigenvalues are not guaran-

teed to be real. We have verified diagonalizability of L for
the systems considered and thus assume the existence of a set
of eigenvectors |eg).le;),....|leov_;) with eigenvalues
Mo M1 s - » MoN_y that are complete, 1=3,|e;){e,|. Therefore,
the formal solution of Eq. (4) can be expressed as

|P(1)) = E e e[P(0))]e;). ©)

The trivial solution |e,) of the eigenproblem for the Liouville
operator with uy=0 corresponds to the absorbing state of the
system. All other eigenvectors |e;) in finite systems have ei-
genvalues with positive real parts and thus decay exponen-
tially with time. In the thermodynamic limit (N — ), there is
one eigenstate |e;) with corresponding eigenvalue w,, which
is zero in the active and nonzero in the nonactive phase. In a
finite system, the value of u,; in the active (nonactive) regime
approaches a zero (nonzero) value with increasing N, thereby
signaling the phase transition. This behavior is illustrated in
Fig. 1(a) for the CP on a linear chain of length 8. The eigen-
value that governs the decay of the active state u, effectively
governs the temporal correlations which is why one makes
the identification & '=Re(u,) where ¢ denotes the temporal
correlation length.

B. Finite-size scaling

As in a finite system the spectrum does not by itself yield
accurate predictions for the critical rates of the CP, finite-size
scaling (FSS) has to be employed to extrapolate these rates
from finite-lattice data to the thermodynamic limit. In the
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following we describe a procedure following Refs. [11,22]

In the contact process various quantities are known to
follow scaling relations in the vicinity of the critical point
[6]. The correlation lengths in the time and space directions
g and &, diverge according to

g~ & ~ A~ |A[e, (6)

where A=e—¢€, (with €, the critical recovery rate in the ho-
mogeneous system) is the deviation from criticality, v and
v, are universal critical exponents and #=v;/v, is the dy-
namical critical exponent. These scaling relations are only
strictly valid in the limit of an infinite system N — oo,

However, one can consider the spatial correlation length
&) 1 in a finite system of linear size L. In the spirit of the
finite-size renormalization group technique by Nightingale
[23], the change of &, ; under real space rescaling L— L’
defines the renormalized rate €

gL,L’(E’) = (%)giL(E) (7)

The fixed point of this transformation €, defined by condi-
tion

L’ .
EL,L’(€2)= (Z)EL,L(EZ)’ (8)

can be shown to converge to the critical rate in the infinite
system €, — €. as L— [24].

As the spatial and temporal correlation lengths are related
via the dynamical exponent 6 defined above, the finite-size
version of these &, and &, ; are related via 6;, the dynami-
cal exponent in a system of size L. Thus, using the scaling
behavior of the correlation lengths (6) and the finite-size
renormalization transformation at its fixed point (8), one ob-
tains

gule) \ & (€ L

L
Therefore, by comparing three system sizes L, L', L” one
obtains finite-size estimates for the critical rate €, in the in-
finite system and the corresponding dynamical exponent 6.

By exploiting the fact that L is sparse which allows the use
of specialized techniques such as the Arnoldi method, we can
determine the lowest nontrivial eigenvalue (previously wu)
for one-dimensional systems of up to size L=22[27]. From a
sequence of eigenvalues for systems of increasing size and
employing the BST extrapolation scheme [25,26] we are able
to make predictions about the behavior in the infinite system.

IV. RESULTS AND DISCUSSION

In this investigation, we have considered the CP on a
periodic binary chain of alternating sites of A and B type
...ABAB... with rates as defined above. MC simulations
starting from a single infection seed were carried out for a
range of values of €, and €5 (3 X 10° realizations to a maxi-
mum of 3 X 103 time steps, system size much larger than size
of active cluster). The critical point was located following [9]
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FIG. 2. (Color online) The phase diagram for the CP on a binary
chain of two species A and B with recovery rates €4 and e, respec-
tively, obtained using the commonly used discrete-time simulation
algorithm (lower curve) and the modified discrete-time algorithm
(upper curve) as well as the two continuous-time methods described
in the text (upper curve, all data points coincide at this scale). For
€, > €,, the critical line is symmetric about the bisector (not shown).
The homogeneous critical point at €4=€5=0.606456 is marked with
a solid dot.

by comparison to asymptotic dynamical scaling forms. The
resulting line of critical points is shown in Fig. 2 for all
methods.

At the homogeneous point €4=ez=€,.=0.606456(4) [2]
(marked with a solid dot in Fig. 2), all methods are found to
agree within measurement uncertainty. When €, is moved
away either way from the homogeneous critical point, the
commonly used discrete-time implementation, as expected,
increasingly deviates from the other methods with increasing
distance from €, giving a wrong critical point. The deviations
6 as a function of distance from the homogeneous critical
point (for €, < €,) are found numerically to follow to leading
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order 6= (€,—€4)®, with @=2.4. The bottom rows of Table I
list the critical values of ez obtained for the four specific
points €,=0.4,0.45,0.5,0.55.

In order to compare the modified discrete-time method
and the continuous-time implementations, a performance test
was carried out. To this end, the computing time required for
each algorithm to reach a certain value of the mean density
of infected sites was analyzed. Specifically, we considered a
fixed number of runs at the critical point in systems of in-
creasing heterogeneity in rates. This performance measure
was chosen due to the fact that MC time in the different
methods cannot be simply related to each other. For such a
test to be meaningful, we require that (a) fluctuations in the
simulation processes are comparable and (b) that the MC
time needed to reach the chosen average density of infection
is not very sensitive to the difference between rates. Indeed,
fluctuations are found to be comparable between simulation
methods with a similar number of infection and recovery
events required. Also, the second requirement was found to
be met with the MC time changing by not more than 3% for
the differences in rates under consideration. In practice, the
test was carried out by initially determining the MC time
required to reach a fixed value for the average density of
infected sites for all methods. Subsequently, the correspond-
ing real computing time was recorded. The resulting times
for the process (in arbitrary units) are shown in Fig. 3 for a
range of critical points along the phase separation line with
increasing difference in rates ez—€,.

As can be seen (see Fig. 3), the continuous-time methods
are found to perform marginally better than the discrete-time
version even at the homogeneous critical point. Moreover,
with increasing difference between the rates, the computation
time required by the discrete-time simulation rises while it
remains constant for both continuous-time methods (whose
times are found to coincide). The difference in times at the
homogeneous critical point can be explained by the fact that,
unlike in the continuous-time methods, in the discrete-time
simulation procedure infection can fail if the randomly cho-

TABLE I. Critical rate e for various €, obtained through the extrapolation of finite lattice data and
simulation results for both the commonly used discrete time (wrong MC) as well as all other methods (correct
MC) methods where o is the free parameter of the BST extrapolation scheme.

€,=€g €,=0.55 €,=0.5 €,=0.45 e,=04
L',L,L" €p (critical) €p (critical)

6,8,10 0.6139938759 0.6861248737 0.7566459788 0.8446025135 0.9572746371
8,10,12 0.6116343230 0.6808438382 0.7508606811 0.8382581629 0.9503119002
10,12,14 0.6102010124 0.6776329261 0.7473059648 0.8342843197 0.9458127224
12,14,16 0.6092784404 0.6755659904 0.7450044211 0.8316843257 0.9428206243
14,16,18 0.6086534110 0.6741658321 0.7434397946 0.8299054657 0.9407534279
16,18,20 0.6082117797 0.6731766609 0.7423318390 0.8286404733 0.9392739992
18,20,22 0.6078888141 0.6724533770 0.7415203690 0.8277112543 0.9381824293

0.6067(3) 0.6699(6) 0.7387(6) 0.8244(7) 0.9339(8)

0.681 0.666 0.643 0.593 0.483
correct MC  0.606457(3) 0.6694(1) 0.7382(1) 0.8238(1) 0.9332(2)
wrong MC 0.606456(3) 0.6688(1) 0.7362(1) 0.8188(1) 0.9234(2)
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FIG. 3. (Color online) CPU Time (arbitrary units) required for
the discrete-time (black circles), the n-fold way (red squares), and
the priority queue algorithms (blue diamonds) to reach a fixed av-
erage number of infected sites in 10° simulation runs for a range of
values of €, at criticality.

sen nearest neighbor is not in the susceptible state. The in-
crease in computation time with larger heterogeneity for the
discrete-time simulation, on the other hand, can be under-
stood by the fact that the waiting step in Eq. (1) becomes
more probable. This fact renders the continuous-time meth-
ods very useful for simulation of, e.g., truly disordered sys-
tems with heterogeneous rates which suffer from very long
relaxation times [2].

As a second means of analysis, the Liouville operator for
a binary AB chain of up to size L=22 sites with periodic
boundary conditions was diagonalized. Due to symmetry
considerations only even system sizes are useful for the
analysis. The results of the FSS scheme outlined in Sec. III B
are listed in Table I for the homogeneous critical point and
the previously mentioned four other points that gradually
move away from this point towards greater heterogeneity of
rates. The Arnoldi method which was used to carry out the

calculation of the lowest nontrivial eigenvalue of L was
found to produce eigenvalues numerically precise to 107!
for the systems considered. This limits the precision to which
the € in Eq. (9) can be determined. Carefully considering
the propagation of errors, we report the system-size depen-
dent critical rate €, defined in Eq. (8), up to ten decimal
places which we are confident are numerically precise. The
value of € in the limit N— o has been extrapolated via the
BST extrapolation scheme where the parameter w has, as
usual, been chosen to minimize the difference between pen-
ultimate entries in the extrapolation tableaux [25,26].

For the homogeneous case, the extrapolation yields a
value which agrees with both the established critical thresh-
old rate as well as the MC result to within 3 X 10™*. Con-
cerning the heterogeneous systems, the method confirms that
the commonly used discrete-time method predicts the wrong
critical rate (“wrong MC” in Table I) as opposed to all other
methods (“correct MC” in Table I). Despite the smaller num-
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ber of available finite-lattice data points as compared to stud-
ies of homogeneous systems [ 11] the precision is found to be
sufficient for our comparison.

As a by-product, the dynamical critical exponent 6 was
determined and found to be 1.56(2). This is in agreement
with the known DP value [1.580759(6) [2]], as previously
observed for other exponents in heterogeneous systems [14].

Lastly, we consider the low-lying spectrum of the Liou-
ville operator as shown in Fig. 1 for a homogeneous system
(a) and a binary chain (b) both of length L=38. The lowest
nontrivial eigenvalue is found to behave rather differently in
these two situations: While for the homogeneous system it
grows from (close to) zero with increasing € in the heteroge-
neous system it resembles a saturation curve with an inflex-
ion point with increasing €, and fixed value of ez=¢,. Physi-
cally, this point of inflexion marks a point at which the effect
that an increase in €, has on the decay of the active state
starts to diminish (we are approaching a saturation regime).
At large values of €4 the eigenvalue seems to asymptotically
approach a constant value which is solely set by the value of
€. This is intuitively clear because when the recovery rate of
one type of site is very large, only the recovery rate of the
respective other type of site controls the decay of the active
state.

V. CONCLUSION

We have simulated the one-dimensional contact process
on periodic binary chains with heterogeneous recovery rates.
Four different simulation methods were presented; the com-
monly used discrete-time algorithm, a modified version of it,
and two continuous-time implementations. The CP in an en-
vironment with heterogeneous recovery rates was simulated
by each of these confirming that the commonly used
discrete-time method predicts a wrong critical threshold.
Therefore, the commonly used discrete-time algorithm must
not be used in heterogeneous systems if one is interested in
the precise critical thresholds. A performance comparison be-
tween the latter three methods showed an advantage in using
the continuous-time methods, particularly in the presence of
strong heterogeneity. This may help in the analysis of disor-
dered systems with heterogeneous rates in which simulation
is a challenging task due to very long relaxation times. Re-
sults from considering the Liouville operator for finite ver-
sions of the simulated systems and applying finite-size scal-
ing to the lowest gap of its eigenspectrum supported the
predictions of the continuous-time simulation methods.
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